Q&A: Database design

1. What is normalization? Explain different levels of normalization?

A relational database is basically composed of tables that contain related data. So the process of organizing this data into tables is actually referred to as normalization.


Normalization is the process of organizing data in a database. This includes creating tables and establishing relationships between those tables according to rules designed both to protect the data and to make the database more flexible by eliminating two factors: redundancy and inconsistent dependency.

Check out the article from Microsoft knowledge base: http://support.microsoft.com/kb/100139


1NF  Eliminate Repeating Groups – Make a separate table for each set of related attributes, and give each table a primary key.

2NF  Eliminate Redundant Data – If an attribute depends on only part of a multi-valued key, remove it to a separate table.

3NF  Eliminate Columns Not Dependent on Key – If attributes do not contribute to a description of the key, remove them to a separate table.

2. What is denormalization and when would you go for it?

As the name indicates, denormalization is the reverse process of normalization. It’s the controlled introduction of redundancy in to the database design. It helps improve the query performance as the number of joins could be reduced.

3. How do you implement one-to-one, one-to-many and many-to-many relationships while designing tables?

One-to-One relationship can be implemented as a single table and rarely as two tables with primary and foreign key relationships. One-to-Many relationships are implemented by splitting the data into two tables with primary key and foreign key relationships. Many-to-Many relationships are implemented using a junction table with the keys from both the tables forming the composite primary key of the junction table. It will be a good idea to read up a database designing fundamentals text book.

4. What’s the difference between a primary key and a unique key?

Both primary key and unique enforce uniqueness of the column on which they are defined. But by default primary key creates a clustered index on the column, where are unique creates a nonclustered index by default. Another major difference is that, primary key doesn’t allow NULLs, but unique key allows one NULL only.

5. What are user defined datatypes and when you should go for them?

User defined datatypes let you extend the base SQL Server datatypes by providing a descriptive name, and format to the database. Take for example, in your database, there is a column called Flight_Num which appears in many tables. In all these tables it should be varchar(8). In this case you could create a user defined datatype called Flight_num_type of varchar(8) and use it across all your tables. See sp_addtype, sp_droptype in books online.

6. What is bit datatype and what’s the information that can be stored inside a bit column?

Bit datatype is used to store boolean information like 1 or 0 (true or false). Until SQL Server 6.5 bit datatype could hold either a 1 or 0 and there was no support for NULL. But from SQL Server 7.0 onwards, bit datatype can represent a third state, which is NULL.

7. Define candidate key, alternate key, composite key.

A candidate key is one that can identify each row of a table uniquely. Generally a candidate key becomes the primary key of the table. If the table has more than one candidate key, one of them will become the primary key, and the rest are called alternate keys. A key formed by combining at least two or more columns is called composite key.

8. What are defaults? Is there a column to which a default can’t be bound?

A default is a value that will be used by a column, if no value is supplied to that column while inserting data. IDENTITY columns and timestamp columns can’t have defaults bound to them. See CREATE DEFAULT in books online.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s